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Abstract. We study soliton solutions of the nonlinear equation governing pulse propagation 
in semiconductor-doped glass (SDG) fib= which have saturation-type nonlinearity. The phase 
moddalion of the pulse is nonlinear and no sech-type soliton exists in SEC fibres when high- 
order correction terms are taken into account. As compared with optical solitons in ordinary 
glass fibres, the property of the solitons discussed here is somewhat different. 

There has recently been substantial interest in soliton propagation along optical fibres. This 
interest stems from the development of optical communication systems, optical switching, 
and fundamental nonlinear physics aspects. The propagation of the picosecond pulse 
envelope in a lossless nonlinear optical fibre is described by the nonlinear Schrodinger (NLS) 
equation [1-2]. The experiment was carried out on a monomode fibre of length 700 m at 
first [3]; for a femtosecond pulse, higher-order nonlinear phenomena are stimulated, and 
the NLS equation is extended to include higher-order correction terms, and replaced by the 
modified nonlinear Schrodinger (MNLS) equation, which supports different types of soliton 
and has been investigated in many papers [4-7]. In recent years, nonlinear properties of 
semiconductor-doped glass (SDG) fibres have been the interesting subjects in relation to 
switching in optical fibres and waveguides [8-lo]. Because solitons show uniform phase 
shift over the entire waveform in the anomalous dispersion region, switching of the entire 
pulse can be achieved if solitons are used; otherwise, only partial switching of the pulse 
is possible Ill]. As we know, the nonlinearity in SDG fibres is of the saturation type 
rather than the usual Ken type, thus the NLS of MNLS equation is a poor approximation. 
Taking into account the saturation-type nonlinearity and using the slowly varying envelope 
approximation, Kumar [ 121 derived the nonlinear equation governing pulse propagation in 
SDG fibres. In this paper, the soliton solutions of the nonlinear equation are discussed by 
using the separating-variable method. 

For an isotropic monomode SDG fibre with a circular cross-section, in the case of 
saturation-type nonlinearity, the wave equation for the fibre core can be written as 

t Mailing address: Department of Physics. Xiangtan University. Xiangtan 411105, H u m ,  People's Republic of 
China. 
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where c is the speed of light, and DL and DNL denote the linear and nonlinear parts of the 
electric displacement vector D, with 
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DL(t) = E(t’)E(t - t’) dt‘ (2) 

(3) 

It should be pointed out that we use equation (3) as the mathematical model for saturation- 
type nonlinearity in this paper; it is due to equation (3) that the new nonlinear equation 
is obtained and solutions are found. In the Kerr-type medium, we have the well known 
relation DNL = nz1E12E, from which the NLS equation is derived. The above relation is 
an approximation of equation (3), as we can see clearly when we expand exp(-XIEI2) in 
a Taylor series and omit higher-order terms. 

Supposing that the solitary wave is entirely supported by the HE11 mode of the fibre 
far from the cut-off, then the electric field is confined entirely in the core and its major 
component is the traverse one, which is linearly polarized. Hence the electric field E is 
assumed to be of the following form: 

LW 
DNL(t) = EJE - Eexp(-xIE12)]. 

E ( x ,  t ,  I )  = e R ( r ) A ( t ,  x )  exp[-i(wt - kox)] (4) 

where e is the unit vector in the direction of polarization, ko is the propagation constant, 
R(r) is the mode function and A(x ,  t )  is the slowly varying envelope complex amplitude. 
Here T is a two-dimysional vector in the plane perpendicular to the x-axis. 

In the slowly varying envelope approximation, one obtains the following dimensionless 
nonlinear equation [12]: 

with 

where x = 6z/c8 is the parameter representing the saturation-type nonlinearity, and the other 
terms have the same meanings as for ordinary glass fibres. The terms on the right-hand 
side of equation (5) are a higher-order correction, in the absence of which equation (5) has 
the following form: 
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In a previous letter, soliton solutions of equation (IO) have been studied [13]. The main 
conclusions were that equation (IO) contains two kinds of optical solitons: the sech type and 
the ‘combined’ type; and the phase modulation of the pulse is linear. When higher-order 
correction terms are taken into account, optical solitions existing in SDC fibres have different 
properties. It is the purpose of the present paper to look for soliton solutions of equation (5) 
and compare the results with those for ordinary glass fibres. 

Separating q(e, t) into the real amplitude p(e, 5 )  and phase q5(e, z), according to 
A(e, t) = pexp(i4), and inserting it into equation (3, we obtain 

(12) 

In order to obtain the travelling wave soliton solution of equations (11) and (12). we look 
for solutions of the form 

where z = t - Me and the e dependence of q5 is restricted by the conditions assumed as 
follows [4]: 

@c = const = k (15) 

#;is independent of b. (16) 

The constants M and k correspond to the inverse soliton velocity shift and wavenumber 
shift, respectively. 

Inserting equations (13) and (14) into equations (11) and (12) using equations (15) and 
(16), one obtains 

after multiplication with p .  equation (17) can be integrated once to yield 

(19) 
3a 501 
4 18 

& = M - -pz + -p4  + . . . + (-l)”+lp2” + . . . 

where we consider only the case of a ‘bright’ soliton solution where p 
Hence the integral constant in equation (19) is equal to zero. 

0 as z + +co. 
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At first, we keep terms up to p2 and neglect higher-order terms in equation (19), then 

3or 
4 

= M - -p2. 

Inserting equation (20) into equation (18) and expanding exp(-p2) in a Taylor series and 
omitting higher-order terms in equation (U), equation (18) becomes 

1 (1 - aM)  30r' 
2 -Pa - U2P f 2 p -kzp5=0  

where u2 = k - M2/2,  equation (21) can be integrated once and transformed into a form 
analogous to the equation of motion of a particle in a onedimensional potential field, 

(22) 1 2  TP, + V(P), = 0 

where the potential field V(p) is 

Assuming that the peak of the pulse is located at z = 0, i.e. p(0) = PO. and p'(0) = 0, 
we have V(&) = 0, which specifies the relation between the wavenumber shift k and the 
soliton peak amplitude as 

M2 (1-aM) or2 
4 Po +%PO. k = - f  

2 

The formal sorution of equation (22) is obtained according to 

after some careful operations one can express p2 as 

- - 
2 - v  

with 

p2=-p,"+-( l -orM)p~ or2 1 
16 2 

Figure 1 is a diagram of p versus z from equation (26); the selected parameters are 
po = 1.0, p = 0.5 and U = 0.2. It is noted that in ordinary glass fibres, when including 
a nonlinear correction term involving a time derivative of the pulse envelope, the MNLS 
equation has a similar soliton solution to equation (26) [SI, which is the basic soliton 
existing in SDG fibres when higher-order corrections are not neglected and for a pulse of 
low intensity. So, the MNLS equation is an approximate of the nonlinear equation which 



Optical solitons in semiconductor-doped glass fibres 3915 

z Iarbitmry units1 

Figure 1. The curve of p versus z from equation (26). with the following parameters: pn = 1.0, 
fi = 0.5 and U = 0.2. 

describes pulse propagation in SDG fibres. In the limit when a! = 0, we have p2 = p&'2 
and U = 1, and the soliton form of p is changed to a sech type. This is natural since when 
a! = 0, higher-order correction terms are neglected, and equation (5) identifies equation (lo), 
which supports a sech-type soliton for a pulse of low intensity [13]. 

In general, we keep terms up to p2" in equation (19) and insert i t  into equation (18). 
We then obtain an equation whose highest order is determined by p#; the equation can be 
transformed to 

(29) 2 wz + V(w) = 0 

where w = p2 and 

(30) 2 V(W) = -w (a0 +alw + .. .+akwk) .  

Such a potential function can be written as follows: 

V(W) = -U,W'(W + AI)*(w + A#. . . (W + A , - l ) Z ( ~ 2  + A,w +&+I) (31) 

where AI, A 2 . .  .A.+l are the constants determined by a l ,  a2,. , .ab,  a h ,  h,+l > 0, 
A,, Az, . . .A, < 0, and hl, < A2 < A3 < . . . e A,. Hence, equations (29) and (31) are 
integrable and support a 'combined'Xype soliton solution, and their general form can be 
found as 1141 

2 
(32) 

exp(X) - 2 A n / d m +  ex$-X) 

where 
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From the above discussion, we notice that when the higher-order correction terms are 
included in the nonlinear equation, i.e. for a femtosecond pulse, there are two kinds of 
solitons existing in SDG fibres. One is the cosh type, and the other the ‘combined’ type. 
The first type corresponds to a low intensity of the pulse envelope, where terms higher 
than p6 can be neglected in the potential function, and it is the lowest approximate soliton 
solution of equation (5) and the basic soliton existing in SDG fibres when OL cannot be 
neglected. As for the second type of soliton, it should be stressed that for each n there is a 
‘combined’ shape soliton and each of these solitons is the nth-order approximate solution 
of equations (11) and (12). Theoretically, the exact soliton solution of equations (11) and 
(12) is the ‘combined‘ form when n -+ CO. However, the coefficients in the expansion 
of equation (19) become less and less when the value of n increases. Then for the finite 
intensity of the optical pulse envelope, a limited nth-order soliton is a good approximate for 
the exact solution. To make the description clearer, we show equation (32) diagrammatically 
in figure 2 for n = 2, AI = -4, AZ = -0.9. A) = 0.2 and a4 = 1, and plot curves of equation 
(32) for n = 3,4, with other parameters as shown in the figure caption. From figure 3, we 
can see that the two curves almost overlap, in other words they tend to have the same form, 
which may be regarded as the soliton propagating in SDG optical fibres. In our numerical 
simulations, we find that the parameters may be different from each other; however, the 
soliton existing in SDG fibres can be represented by a limited nth-order approximate solution 
which has the ‘combined‘ form as expressed in equation (32). 

Kothari [15] investigated the nonlinear composite medium. He concluded that effective 
nonlinearity in a composite material must have saturation, and for a low-intensity field the 
effective-medium dielectric constant E& can be expanded into a power series of [El2, 

(36) 

so, for a low-intensity field in saturation-type optical fibres, the pulse propagation is similar 
to that for the high-intensity field in ordinary optical fibres where the higher-order nonlinear 
refraction indices should be included. But the physical mechanism is somewhat different 
in two cases. 

In conchsion, for weak saturation-type nonlinearity SDG fibres, the NLS (or MNLS) 
equation is a good approximate nonlinear equation which governs picosecond (or 
femtosecond) pulse propagation as in the case for ordinary glass fibres. In general, the 
optical soliton propagating in SDG fibres is the ‘combined‘ type, which is not supported in 
ordinary glass fibres. 

= E + ~ z x ( ~ ’ I E ~ ~  + ~ z x ‘ ~ ’ I E ] ~  + ~, . 
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Figure 2. The soliton shape of the 'combined'-type Solution for n = 2. The other parameters 
are as follows: 11 = -4.0, 12 = -0.9. 1 3  = 0.2 and cq = 1.0. 

Figure 3. The soliton curves for n = 3 and n = 4. where the full (broken) line corresponds 
to n = 3 (n = 4). respectively. The parameters are as follows: n = 3. AI = -4.0.12 = 
-2.0.13 = -0.9, .*4 = 0.2.q = 0.5 and n = 4 .Al  = -4.O.h = -2.O.Aj = -1.5.14 = 
-0.9. As = 0.2, ag = 0.4. 
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